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We report here the first highly enantioselective (up to 98.2%
ee) catalytic asymmetric automultiplication of chiral pyrimidyl
alcohol.

Great progress has been made in enantioselective synthesis. Nﬁ)‘\H + (tPrazn
In conventional enantioselective synthesis, regardless of the type g~y
(homogeneous, heterogeneous, catalytic, or stoichiometric), the 18R

use of chiral auxiliaries with structures different from those of

the products as chiral catalysts or ligands is inevitable. Chiral

sulted in only moderate enantiomeric excesses. Moreover, the
ee’s of the products have been much lower than those of the
chiral catalysts. Thus, research in this field has remained at a
fairly primitive stage. The design of a chiral compound which
automultiplies with high enantioselectivity is a challenging
problem.

This report describes the highly enantioselective catalytic
asymmetric automultiplication reaction of chiral pyrimidyl
alcohols in the isopropylation of pyrimidine-5-carbaldehydes
(eq 1).
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catalysts and ligands are often expensive and can require steps The asymmetric automultiplication reaction was examined
for their preparation. Moreover, separating the catalyst from USing enantio-riched§-2-methyl-1-(5-pyrimidyl)-1-propanol

the products is often very tedious.
In the enantioselective addition of alkyllithium and alkyl-

(2a)° as a chiral catalyst. When pyrimidine-5-carbaldehyde
(1a)'° (1.0 mmol) was treated with diisopropylzinc (1.2

magnesium reagents to carbonyl compounds in the presence ofimolfe5*tin the presence of chiral pyrimidyl alcohda
chiral ligands, the enantioselectivity varies depending on the (92.6% ee, 20 mol %) as a catalyst in toluene &Q) 0.83

molar ratio of the ligands, alkyl metals, and substrates.

mmol of (§-2a (91.0% ee) was obtained. The recovered

Furthermore, the chiral products formed during the reaction may catalyst was included in the resulting{2a. Newly synthesized

affect the enantioselectivity of the reactibn.

(9-2a with 90.4% ee was formed at a yield of 63% (Table 1,

If a chiral compound acts as a chiral catalyst and produces fun 1) When ©-2awith a higher ee (99.0% e€was used

itself with the same configuration.¢., catalytic asymmetric

as a chiral catalyst, the ee of the newly forn#&dncreased to

automultiplication), the reaction does not require a catalyst with 93.3% ee (run 3). Thus, chiral pyrimidyl alcor@d with high

a structure different from that of the proddét. Thus, the

enantiomeric purity regenerates itself in the same configuration

catalyst does not need to be separated from the product aftewith high ee (Figure 1).

the end of the reaction. In addition, catalytic automultiplication

It is more surprising that§)-2-methyl-1-(2-methyl-5-pyrim-

of a chiral compound is considered to be the asymmetric version idYl)-1-propanol gb, 20 mol %j with 94.8% ee automultiplied

of molecular replicatiof.
With this in mind, wé and other grougshave investigated
the catalytic asymmetric automultiplication of chiral compounds.

Although the newly formed compounds have the same config-

itself without any loss of eduring the reaction of 2-methylpy-
rimidine-5-carbaldehyde1p)!* and {-PrpZn (run 4). The
resulting §-2b (including the catalyst) had an enantiomeric
purity of 95.4% ee.2b with 94.8% ee automultiplied at a yield

uration as the compounds used as chiral catalysts, early example8f 48% with no loss of its ee (95.7% ee) (run'4)The use of

of catalytic asymmetric automultiplication reactions have re-

* Correspondence to Prof. Kenso Soai: FAX: 81-3-3235-2214.
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Table 1. Enantioselective Catalytic Automultiplication of Pyrimidyl Alcohdl

chiral catalyst

catalyst2 and product $)-2

newly formed product$)-2

runt aldehydel (9-2 (9% eef time, h yield, % ee, % yield, % ee, %
1 la 2a(92.6) 66 2a 83 91.0 2a 63 90.4
2 la 2a(93.4) 43 2a 79 90.8 2a 59 89.9
3 la 2a(99.0) 40 2a 87 94.7 2a 67 93.3
4 1b 2b(94.8) 72 2b 68 95.4 2b 48 95.7
5d 1b 2b(94.8) 50 2b 100 93.8 2b 80 93.5
6 1b 2b(99.9) 108 2b 58 98.8 2b 38 98.2
7d 1b 2b(99.9) 68 2b 103 95.9 2b 83 95.0

aUnless otherwise noted, molar ratio &i2:(i-Pr)Zn = 1.0:0.2:1.2° Determined by HPLC analysis using a chiral column (Daicel Chiralcel
OD). ¢ The recovered chiral catalyst (20 mol %) is includétolar ratio of 1:2:(i-PrpZn = 1.0:0.2:3.2.
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Figure 1. Reaction scheme of the catalytic asymmetric automultipli-
cation of2.

other hand, wher2b with 99.9% eé® was used as a catalyst,
the ee of the newly formedb reached 98.2% ee (run &7
Typical experimental procedures (Table 1, run 1) were as
follows: After a mixture of pyrimidyl alcohol$)-2a[30.5 mg
(0.20 mmol), 92.6% ee, containing){2a (29.4 mg), R)-2a
(2.2 mg)] in toluene (44.8 mL) and-PrZn (1.2mLdal1lM
toluene solution, 1.2 mmol) was stirred for 30 min at@, a
toluene solution (1.8 mL) of aldehyde (108.2 mg, 1.00 mmol)
was added at OC. The reaction mixture was stirred for 66 h
at 0°C and then quenched by the additidildN hydrochloric
acid (5 mL) and saturated aqueous NaHQTb mL) at 0°C.
The mixture was filtered using Celite, and the filtrate was

the mixture using a chiral column (Daicel Chiralcel OD) showed
that it had an enantiomeric purity of 91.0% ee. Therefore, the
mixture contained$)-2a (120.9 mg) andR)-2a (5.7 mg). The
amount of newly formed alcoh@awas 126.6— 30.5= 96.1

mg (0.631 mmol, 63% yield), consisting of maj&@{2a(120.9

— 29.4=91.5 mg) and minorR)-2a (5.7 — 1.1 = 4.6 mg).
The newly formed §-enriched alcoha2a had an enantiomeric
purity of 90.4% ee.

The present enantioselective catalytic automultiplication
reaction is unprecedented in two respects. First, the ee of the
reaction (up to 98.2% ee) is much higher than those in
previously reported automultiplication reactiofis. Second,
under certain conditions, the automultiplication proceeds without
any loss of the enantiomeric purity of the compound. Thus,
once optically active pyrimidyl alcohoRb is prepared, it
replicates and automultiplies without the assistance of any other
chiral auxiliary. The mechanism of this highly enantioselective
catalytic asymmetric automultiplication of chiral pyrimidyl
alcohol is currently under investigation.

The present automultiplication process provides one of the
most direct and resource- and energy-saving methods for
asymmetric synthesis.
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